Convex hulls having regular diamonds |
As for Mr. Bonnie M. Stewart's previous work on the subject, here is an excerpt from the book: "Search projects We dignify the following exercises with the title "search projects", since, if the explorer wishes, each proposal may become quite an ambitious undertaking and each one is open-end in character with adventurous trails to follow in many directions. Ex. 160 Let (R') indicate that every face of a polyhedron P is either regular or is a rhombus <> of unit edge with a 60° angle, i.e., a compound of two regular triangles." |
all the examples below have the pink faces called regular diamonds or more specifically known as Vesisa Piscis. |
Models made with Great Stella |
cutting list: D 3 4 5 6 8 10 |
volume area Vertex Faces Edges |
1 2 2 1 * * * * v 0.35355 a 3.59808 V 6 F 5 E 9 J1T1 .stel .wrl |
2 3 4 * * * * * v 0.58926 a 4.33013 V 7 F 7 E 12 S3TT .stel .wrl |
3 6 * * * * * * v 0.70711 a 5.19615 V 8 F 6 E 12 S3TTBB .stel .wrl |
4* 4 * 2 * * * * v 0.70711 a 5.46410 V 8 F 6 E 12 Y4Y3Y4 .stel .wrl |
5*** 2 4 2 * * * * v 0.70711 a 5.46410 V 8 F 8 E 14 P3S1 .stel .wrl |
6 2 * 4 * * * * v 0.86603 a 4.86603 V 8 F 6 E 12 P3S1 .stel .wrl |
7** 2 4 3 * * * * v 1.10173 a 6.46410 V 9 F 9 E 16 P3T1 .stel .wrl |
8** 2 8 2 * * * * v 1.33743 a 7.19615 V 10 F 12 E 20 P3T1B1 .stel .wrl |
9** 2 8 2 * * * * v 1.33743 a 7.19615 V 10 F 12 E 20 P3T1B2 .stel .wrl |
10*** 3 2 2 * 1 * * v 1.41421 a 8.25592 V 10 F 8 E 16 J3T1 .stel .wrl |
11*** 4 * 2 * 2 * * v 2.12132 a 5.46410 V 12 F 8 E 18 J3Y3Y3Y4 .stel .wrl |
12 4 4 5 * * * * v 2.59272 a 10.19615 V 13 F 13 E 24 B4TT .stel .wrl |
13*** 3 6 5 * * * * v 2.59272 a 10.19615 V 13 F 14 E 25 J27T1 .stel .wrl |
14*** 6 4 4 * * * * v 2.82843 a 10.92820 V 14 F 14 E 26 J27T1B2 .stel .wrl |
15 8 * 4 * * * * v 2.82843 a 10.92820 V 18 F 12 E 28 B4TTBB .stel .wrl |
16*** 2 9 2 3 * * * v 3.39522 a 12.79061 V 15 F 14 E 27 SXJ62 .stel .wrl |
17*** 2 9 2 3 * * * v 3.39522 a 12.79061 V 15 F 14 E 27 J91T1 .stel .wrl |
18*** 4 5 2 3 * * * v 3.39522 a 12.79061 V 15 F 14 E 27 J91SIDE .stel .wrl |
19*** 4 10 2 2 * * * v 3.69672 a 13.23519 V 16 F 18 E 32 J91T1B2 .stel .wrl |
20*** 4 10 2 2 * * * v 3.69672 a 13.23519 V 22 F 17 E 37 J91T1T2 .stel .wrl |
21 3 2 3 * 3 * * v 3.88909 a 14.83956 V 15 F 11 E 24 T3TT .stel .wrl |
22*** 3 7 3 3 1 * * v 5.10875 a 19.01361 V 21 F 16 E 35 J92T1 .stel .wrl |
23* 3 12 3 2 1 * * v 5.41025 a 21.07371 V 19 F 21 E 38 J92T1 .stel .wrl |
24*** 4 * 4 * 4 * * v 5.65685 a 7.46410 V 18 F 12 E 28 T3Y4Y4Y3 .stel .wrl |
25*** 4 7 * 5 * * 1 v 7.21927 a 22.79180 V 18 F 17 E 33 J6T1 .stel .wrl |
26 5 5 * 5 * * 1 v 7.21927 a 22.79180 V 15 F 16 E 29 J6TT .stel .wrl |
27*** 8 4 * 4 * * 1 v 7.52077 a 23.23638 V 21 F 17 E 36 J6T1T3 .stel .wrl |
28*** 4 12 5 6 * * * v 9.54331 a 23.98313 V 26 F 27 E 51 J32T1 .stel .wrl |
29*** 4 12 5 6 * * * v 9.54331 a 23.98313 V 26 F 27 E 51 J33T1 .stel .wrl |
30 5 10 5 6 * * * v 9.54331 a 23.98313 V 26 F 26 E 50 J32TT .stel .wrl |
31* 5 10 5 6 * * * v 9.54331 a 23.98313 V 26 F 26 E 50 J33TT .stel .wrl |
32*** 8 9 5 5 * * * v 9.62839 a 24.42772 V 26 F 27 E 51 J32T1T3 .stel .wrl |
33*** 8 9 5 5 * * * v 9.62839 a 24.42772 V 27 F 27 E 52 J33T1T3 .stel .wrl |
34* 5 25 * 5 * * 1 v 13.9585 a 31.45025 V 31 F 36 E 65 J25TT .stel .wrl |
35*** 4 17 * 11 * * * v 14.137 a 29.75060. V 31 F 32 E 61 J34T1 .stel .wrl |
36 5 15 * 11 * * * v 14.137 a 30.19518 V 32 F 31 E 61 B5TT .stel .wrl |
37 5 15 * 11 * * * v 14.137 a 29.75060 V 31 F 31 E 60 J34TT .stel .wrl |
38*** 9 12 * 10 * * * v 14.4385 a V F 31 E J34T1B1 .stel .wrl |
39*** 8 14 * 10 * * * v 14.4385 a 30.19518 V 32 F 32 E 62 J34T1B2 .stel .wrl |
40*** 8 14 * 10 * * * v 14.4385 a 30.19518 V 32 F 32 E 62 J34T1B3 .stel .wrl |
41*** 8 14 * 10 * * * v 14.4385 a 30.19518 V 32 F 32 E 62 J34T1T3 .stel .wrl |
42 10 10 * 10 * * * v 14.4385 a 30.19518 V 27 F 30 E 55 B5TTBB .stel .wrl |
43 5 10 15 6 * * * v 14.4385 a 33.98313 V 36 F 36 E 70 J34TTBB .stel .wrl |
44 10 10 * 10 * * * v 14.4385 a 30.19518 V 27 F 30 E 55 B5TTB1 .stel .wrl |
45*** 12 11 * 9 * * * v 14.74 a 30.63976 V 33 F 32 E 63 J34T1T3B2 .stel .wrl |
46*** 12 11 * 9 * * * v 14.74 a 30.63976 V 33 F 32 E 63 J34T1T3B4 .stel .wrl |
47*** 13 9 * 9 * * * v 14.74 a 29.75060 V F 31 E J34TTB1B3 .stel .wrl |
48 15 5 * 9 * * * v 14.74 a 30.63976 V 33 F 29 E 60 B5TTB1B3 .stel .wrl |
49* 5 5 10 5 * * 1 v 14.9135 a32.79180 V 31 F 26 E 55 J21TT .stel .wrl |
50*** 16 8 * 8 * * * v 15.0415 a 31.08435 V 34 F 32 E 64 J34T1T3B2B4 .stel .wrl |
51 4 4 5 * 5 * * v 15.5425 a 34.33830 V 28 F 18 E 44 T4TT .stel .wrl |
52* 5 30 5 6 * * * v 16.2926 a 32.64399 V 36 F 46 E 80 J47TT .stel .wrl |
53* 5 10 5 6 * * * v 17.2375 a 23.98313 V 26 F 26 E 50 J40TT .stel .wrl |
54* 5 10 15 6 * * * v 17.2375 a 33.98313 V 36 F 36 E 70 J41TT .stel .wrl |
55*** 4 8 10 * * 4 * v 17.5843 a 36.24192 V 32 F 26 E 56 J66BB .stel .wrl |
56* 5 35 * 11 * * * v 20.8863 a 38.41085 V 41 F 51 E 90 J48TT .stel .wrl |
57* 10 30 * 10 * * * v 21.1878 a 38.85544 V 42 F 50 E90 J48TTBB .stel .wrl |
58* 5 15 10 11 * * * v 21.8312 a 36.24192 V F 46 E J43TT .stel .wrl |
59* 5 15 10 11 * * * v 21.8312 a 39.75060 V 41 F 41 E 80 J42TT .stel .wrl |
60 8 * 10 * * 4 * v 22.1327 a 36.24192 V 32 F 22 E 52 T4TTBB .stel .wrl |
61* 10 10 10 10 * * * v 22.1327 a 40.19518 V 42 F 40 E 80 J43TTBB .stel .wrl |
62* 10 10 10 10 * * * v 22.1327 a 40.19518 V 27 F 40 E 65 J42TTBB .stel .wrl |
63 5 15 5 1 * * 11 v 87.3637 a 112.18211 V 65 F 37 E 100 T5TT .stel .wrl |
64 10 10 10 2 * * 10 v 89.6878 a 103.37344 V 70 F 42 E 110 T5TTBB .stel .wrl |
65 10 10 10 2 * * 10 v 89.6878 a 103.37344 V 70 F 47 E 110 T5TTB1 .stel .wrl |
66*** 5 20 10 2 * * 10 v 89.6878 a 103.37344 V 70 F 47 E 115 J68BB .stel .wrl |
67*** 5 20 10 2 * * 10 v 89.6878 a 103.37344 V 70 F 47 E 115 J68B1 .stel .wrl |
68 15 5 15 3 * * 9 v 92.0118 a 104.56477 V 75 F 47 E 120 T5TTB1B3 .stel .wrl |
69*** 10 15 15 3 * * 9 v 92.0118 a 104.56477 V 75 F 52 E 125 J68B1B3 .stel .wrl |
70*** 5 25 15 3 * * 9 v 92.0118 a 104.56477 V 75 F 57 E 130 J70B3 .stel .wrl |
71** 4 10 4 2 2 * * v 7.12377 a V 22 F 22 E 42 stel wrl |
Alex Doskey's page showing these same 70 grouped by base used for augmentation
Special thanks to Alex Doskey for making all the graphics files available on this page. |
B. M. Stewart's original 21 entries are referenced as the integer only ones above |
Credit for additions is denoted by the end of each numbered entry... |
* Steve Waterman April 2006 ** Roger Kaufman April 2006 *** Alex Doskey April 2006 |
An e-mail received from Norman Johnson in March 2006 - |
Dear Steve, |
While I was the first to describe the 92 nonuniform convex polyhedra with regular faces, I did not prove that my list was complete. That was done shortly afterward by a team led by Viktor Zalgaller in Leningrad (now St. Petersburg). The method they used was to consider all combinatorially possible cases and then exclude any that cannot be realized as regular-faced Euclidean solids. Their work was published in Russian in 1967 and in English in 1969 as a monograph "Convex Polyhedra with Regular Faces" (Consultants Bureau, New York). |
If you can find a copy of Zalgaller's monograph, you may be able to identify the figures the would allow two adjacent triangles to be merged as a "regular diamond." As to which of these can actually be constructed, that might be a harder problem. At any rate, I do not think this question has been addressed before, so that you are free to investigate it if you want. |
Norman |
The contents of this web site are © Copyright Steve Waterman or a third party contributer where indicated. You may print or save an electronic copy of parts of this web site for your own personal use. Permission must be sought for any other use. |